Please use this identifier to cite or link to this item:
Title: Investigation of the chemical stability of Zn2SnO4 in aqueous media by using ICP-OES and TEM analyses
Authors: Erden, Sadiye
Savacı, Umut
Özel, Emel
Turan, Servet
Suvacı, Ender
Keywords: Zinc stannate (Zn2SnO4)
Issue Date: 2020
Publisher: Elsevier Science Sa
Abstract: Zn2SnO4(ZTO) is an important electroceramic material having unique optical and electrical properties. For some applications, ZTO has to be used in an aqueous media under various conditions; however, there is still limited understanding about the relationship between particle characteristics and chemical stability in aqueous media. Therefore, in this study, chemical stability of solid state (S-ZTO) and hydrothermally synthesized (H-ZTO) powders was investigated under different conditions; pH, time and particle characteristics as well as dyesensitized solar cell conditions. Analyses revealed that the acidic media resulted with higher dissolution rate of Zn2+ and Sn4+ ions compared with the basic media. H-ZTO is more stable with respect to S-ZTO particles due to less defect concentration. Zn2+ ions dissolve via proton promoted dissolution mechanism in acidic media. Moreover, cationic field strength of the ions in ZTO results in differential dissolution of Sn4+ and Zn2+ ions, which were determined as maximum 0.04% and 0.4%, respectively. TEM studies revealed that no interaction layer found at the surface of particles, thus ZTO powders are chemically stable. Physical and electrical properties of aged ZTO powders prove that ZTO material can be used in different applications which involve acidic or basic aqueous media.
ISSN: 0254-0584
Appears in Collections:Malzeme Bilimi ve Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu

Show full item record

CORE Recommender


checked on Jun 22, 2022

Page view(s)

checked on Oct 3, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.