Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13087/746
Title: Eigenvalue Estimates in Terms of the Extrinsic Curvature
Authors: Eker, Serhan
Değirmenci, Nedim
Keywords: Spin and Spin(c) geometry
Dirac operator
Estimation of eigenvalues
Issue Date: 2021
Publisher: Springer International Publishing Ag
Abstract: In this paper, we give a new lower bound for the eigenvalues of the Dirac operator defined on the Spin Riemannian hypersurface manifold endowed with 2-tensor, in terms of the Energy-Momentum tensor, scalar curvature and extrinsic curvature. Then this estimate is improved in two different ways by considering the conformal invariance of the Dirac operator. The first is given in term of the first eigenvalue of the Yamabe operator. The latter, is given in terms of the the area of a topological 2-sphere.
URI: https://doi.org/10.1007/s40995-021-01136-x
https://hdl.handle.net/20.500.13087/746
ISSN: 1028-6276
2364-1819
Appears in Collections:Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu

Show full item record

CORE Recommender

Page view(s)

24
checked on Oct 3, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.