Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13087/577
Title: | Two-Dimensional Metal-Organic Framework Nanostructures Based on 4,4 '-Sulfonyldibenzoate for Photocatalytic Degradation of Organic Dyes | Authors: | Çiftlik, Asena Semerci, Tuğçe Günay Şahin, Onur Semerci, Fatih |
Issue Date: | 2021 | Publisher: | Amer Chemical Soc | Abstract: | Four new two-dimensional metal-organic frameworks, namely, [Zn-2(sdba)(2)(pbisopix)](n) (KLU-8) (KLU is referring to Kirklareli University), {[Cd-2(sdba)(2)(pbisopix)]center dot 2H(2)O}(n) (KLU-9), [Cd(sdba)(pbisopix)](n) (KLU-10), and [Cd-(sdba)(pbetix)](n) (KLU-11) have been synthesized using a V-shaped 4,4'-sulfonyldicarboxylic acid (H(2)sdba) as anionic and 1,4-bis((2-isopropylimidazol-1-yl)methyl)benzene (pbisopix) or 1,4-bis((2-ethylimidazol-1-yl)methyl) benzene (pbetix) as neutral ligands and characterized by various techniques. In KLU-8 and KLU-9, the {M-2(CO2)(4)} secondary building units (SBUs) are connected by sdba(2-), while in KLU-10 and KLU-11 Cd(II) ions bridged by sdba(2-) form a 2D structure of MOFs revealed by single crystal X-ray diffraction analyses. The topology of MOFs is found to be a 2D sql network. The synthesized MOFs are stable in aqueous medium up to 7 days. KLU-10 and KLU-11 were well-exfoliated via facile sonication process in 10 min, at room temperature, whereas, KLU-8 and KLU-9 showed poor exfoliation yield because of their interpenetrated structure according to the FESEM images. Furthermore, the surface area measurement also proved the exfoliation of MOFs; that is, the exfoliated samples exhibited higher surface area than that of bulk counterparts. The photocatalytic properties of exfoliated MOF nanostructures in the photodegradation of three organic dyes (methyl orange (MO), methylene blue (MB), and rhodamine B (RhB)) have been investigated under UV/vis irradiation. The photodegradation efficiencies of MO, MB, and RhB can reach almost 100% within 40 min, 59% within 60 min, and 66% within 60 min, respectively in the presence of MOF nanostructures as photocatalyst and molecular oxygen as oxidant. The superior photocatalytic efficiency toward MO degradation of KLU-10 and KLU-11, might be attributed to the very high exfoliation yields of MOFs. | URI: | https://doi.org/10.1021/acs.cgd.1c00152 https://hdl.handle.net/20.500.13087/577 |
ISSN: | 1528-7483 1528-7505 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu WoS İndeksli Yayınlar Koleksiyonu |
Show full item record
CORE Recommender
SCOPUSTM
Citations
4
checked on Dec 28, 2022
WEB OF SCIENCETM
Citations
10
checked on Jul 14, 2022
Page view(s)
2
checked on Oct 3, 2022
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.