Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13087/3395
Title: Twitter’da Duygu Analizi Yöntemi Kullanılarak Bitcoin Değer Tahminlemesi
Authors: Öztürk, Zehra Kamışlı
Köksal, Burak
Erdem, Gözde
Türkeli, Cansu
Keywords: 
Issue Date: 2021
Abstract: Bütün sektörler dahilinde finans sektöründe de müşterilere ait fikir ve düşüncelerinin belirlenmesi, firma ve kurumların ileriki dönemler için sunacağı hizmetleri etkilemektedir. Kripto para birimlerinin (Bitcoin, Ethereum, Ripple vb.) ekonomik ve sosyal etkileri hızla artmaya devam ettikçe, ilgili haber makalelerinin ve sosyal medya yayınlarının, özellikle de tweetlerin yaygınlığı da artmaktadır. Bu çalışmada, Twitter kullanıcılarının finans sektörü konularından biri olan Bitcoin ile ilgili yorumları derlenerek bir duygu analizi çalışması yapılmıştır. Kullanıcı yorumları, Twitter’ın sunmuş olduğu API hizmeti vasıtasıyla Python Programlama Dili kullanılarak alınmış; yorumlar olumlu, nötr ve olumsuz etiketler ile ayrıştırılmış, etiket bulutunda toplanmıştır. Naïve Bayes ve Lojistik Regresyon algoritmaları kullanılarak oluşturulan modellerde başarı oranları karşılaştırılmıştır. Naïve Bayes uygulamasının tweetlerin duygularını tahmin etmedeki başarı oranı %72,19 olurken, Lojistik Regresyon uygulamasında bu oran %75,53 olmuştur. Çalışmanın ikinci aşamasında ise, duygu analizinden sonra “Bitcoin” anahtar kelimesi içeren günlük pozitif tweet oranı ile Bitcoin günlük açılış değeri beraber kullanılarak Bitcoin kapanış değeri tahminlemesi yapılmıştır. Finans verileri Yahoo Finance web sitesi üzerinden alınmış; Doğrusal Regresyon ve Rastgele Orman Regresyon yöntemleri ile modeller oluşturulmuştur. Doğrusal Regresyon için ??² değeri %88,97 çıkarken, Rastgele Orman Regresyonu için ise %94,16 olmuştur.
URI: https://doi.org/10.29130/dubited.792909
https://search.trdizin.gov.tr/yayin/detay/497176
https://hdl.handle.net/20.500.13087/3395
ISSN: 2148-2446
Appears in Collections:Endüstri Mühendisliği Bölümü Koleksiyonu
TR-Dizin İndeksli Yayınlar Koleksiyonu

Show full item record

CORE Recommender

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.