Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13087/2733
Title: Assessment of 13 Gridded Precipitation Datasets for Hydrological Modeling in a Mountainous Basin
Authors: Hafizi, Hamed
Sorman, Ali Arda
Keywords: gridded precipitation datasets
validation
hydrological modeling
mountainous basin
Turkey
Neural-Network
Snow Cover
Satellite
Gauge
Trmm
Products
Climate
Uncertainty
Reanalysis
Radar
Issue Date: 2022
Publisher: Mdpi
Abstract: Precipitation measurement with high spatial and temporal resolution over highly elevated and complex terrain in the eastern part of Turkey is an essential task to manage the water structures in an optimum manner. The objective of this study is to evaluate the consistency and hydrologic utility of 13 Gridded Precipitation Datasets (GPDs) (CPCv1, MSWEPv2.8, ERA5, CHIRPSv2.0, CHIRPv2.0, IMERGHHFv06, IMERGHHEv06, IMERGHHLv06, TMPA-3B42v7, TMPA-3B42RTv7, PERSIANN-CDR, PERSIANN-CCS, and PERSIANN) over a mountainous test basin (Karasu) at a daily time step. The Kling-Gupta Efficiency (KGE), including its three components (correlation, bias, and variability ratio), and the Nash-Sutcliffe Efficiency (NSE) are used for GPD evaluation. Moreover, the Hanssen-Kuiper (HK) score is considered to evaluate the detectability strength of selected GPDs for different precipitation events. Precipitation frequencies are evaluated considering the Probability Density Function (PDF). Daily precipitation data from 23 meteorological stations are provided as a reference for the period of 2015-2019. The TUW model is used for hydrological simulations regarding observed discharge located at the outlet of the basin. The model is calibrated in two ways, with observed precipitation only and by each GPD individually. Overall, CPCv1 shows the highest performance (median KGE; 0.46) over time and space. MSWEPv2.8 and CHIRPSv2.0 deliver the best performance among multi-source merging datasets, followed by CHIRPv2.0, whereas IMERGHHFv06, PERSIANN-CDR, and TMPA-3B42v7 show poor performance. IMERGHHLv06 is able to present the best performance (median KGE; 0.17) compared to other satellite-based GPDs (PERSIANN-CCS, PERSIANN, IMERGHHEv06, and TMPA-3B42RTv7). ERA5 performs well both in spatial and temporal validation compared to satellite-based GPDs, though it shows low performance in producing a streamflow simulation. Overall, all gridded precipitation datasets show better performance in generating streamflow when the model is calibrated by each GPD separately.
URI: https://doi.org/10.3390/atmos13010143
https://hdl.handle.net/20.500.13087/2733
ISSN: 2073-4433
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu

Show full item record

CORE Recommender

Page view(s)

12
checked on Oct 3, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.