Please use this identifier to cite or link to this item:
Title: Fuel flow rate modeling for descent using cuckoo search algorithm: a case study for point merge system procedure at Istanbul airport
Authors: Oruç, Rıdvan
Şahin, Özlem
Baklacıoğlu, Tolga
Keywords: Aircraft
Fuel flow rate
Cuckoo search algorithm
Point merge system
Unmanned Aerial Vehicle
Commercial Aircraft
Transport Aircraft
Issue Date: 2022
Publisher: Emerald Group Publishing Ltd
Abstract: Purpose The purpose of this paper is to create a new fuel flow rate model using cuckoo search algorithm (CSA) for the descending stage of the flight. Design/methodology/approach Using the actual flight data record data of the B737-800 aircraft, a new fuel flow rate model has been developed for this aircraft type. The created model is to predict the fuel flow rate with high accuracy depending on the altitude and true airspeed. In addition, the CSA fuel flow rate model was used to calculate the fuel consumption for the point merge system, which is used for combining the initial approach to the final approach at Istanbul Airport, the largest airport of Turkey. Findings As a result of the analysis, the correlation coefficient value is found as 0.996858 for Flight 1, 0.998548 for Flight 2, 0.995363 and 0.997351 for Flight 3 and Flight 4, respectively. The values that are so close to 1 indicate that the model predicts the real fuel flow rate data with high accuracy. Practical implications This model is considered to be useful in air traffic management decision support systems, aircraft performance models, models used for trajectory prediction and strategies used by the aviation community to reduce fuel consumption and related emissions. Originality/value The importance of this study lies in the fact that to the best of the authors' knowledge, it is the first fuel flow rate model developed using CSA for the descent stage in the existing literature; the data set used is real values.
ISSN: 1748-8842
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu

Show full item record

CORE Recommender

Page view(s)

checked on Oct 3, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.