Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13087/2205
Title: MOBIUS-INVARIANT HARMONIC FUNCTION SPACES ON THE UNIT DISC
Authors: Kaptanoğlu, H. T.
Üreyen, A. E.
Keywords: Mobius transformation
Mobius-invariant harmonic function space
harmonic Bergman-Besov space
harmonic Bloch space
Hilbert-Spaces
Issue Date: 2021
Publisher: Springer Int Publ Ag
Abstract: We investigate and identify Mobius-invariant harmonic function spaces on the unit disc. We derive their fundamental properties and establish connections among various topologies on them. We show that the harmonic Bloch space b(infinity) is the maximal and the Besov space b(-)(2)(1) is the minimal invariant complete seminormed space. There is only one invariant semi-Hilbert space and it is the harmonic Dirichlet space b(-)(2)(2).
URI: http://doi.org/10.1007/s10476-021-0110-x
https://hdl.handle.net/20.500.13087/2205
ISSN: 0133-3852
1588-273X
Appears in Collections:Matematik Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu

Show full item record

CORE Recommender

Page view(s)

146
checked on Oct 3, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.