Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.13087/1913
Title: Non-Contact Respiratory Rate Estimation in Real-Time With Modified Joint Unscented Kalman Filter
Authors: Uysal, Can
Onat, Altan
Filik, Tansu
Keywords: Estimation
Monitoring
Real-time systems
Kalman filters
Wireless communication
Standards
Noise measurement
Unscented Kalman filter
joint unscented Kalman filter
respiratory rate tracking
device-free
vital signs
health monitoring
radio signals
Issue Date: 2020
Publisher: IEEE-Inst Electrical Electronics Engineers Inc
Abstract: It can be life-saving to monitor the respiratory rate (RR) even for healthy people in real-time. It is reported that the infected people with coronavirus disease 2019 (COVID-19), generally develop mild respiratory symptoms in the early stage. It will be more important to continuously monitor the RR of people in nursing homes and houses with a non-contact method. Conventional, contact-based, methods are not suitable for long-term health monitoring especially in-home care services. The potentials of wireless radio signals for health care applications, such as fall detection, etc., are examined in literature. In this paper, we focus on a device-free real-time RR monitoring system using wireless signals. In our recent study, we proposed a non-contact RR monitoring system with a batch processing (delayed) estimation method. In this paper, for real-time monitoring, we modify the standard joint unscented Kalman filter (JUKF) method for this new and time-critical problem. Due to the nonlinear structure of the RR estimation problem with respect to the measurements, a novel modification is proposed to transform measurement errors into parameter errors by using the hyperbolic tangent function. It is shown in the experiments conducted with the real measurements taken using healthy volunteers that the proposed modified joint unscented Kalman filter (ModJUKF) method achieves the highest accuracy according to the windowing-based methods in the time-varying RR scenario. It is also shown that the ModJUKF not only reduces the computational complexity approximately 8.54% but also improves the accuracy 36.7% with respect to the standard JUKF method.
URI: https://doi.org/10.1109/ACCESS.2020.2998117
https://hdl.handle.net/20.500.13087/1913
ISSN: 2169-3536
Appears in Collections:İnşaat Mühendisliği Bölümü Koleksiyonu
PubMed İndeksli Yayınlar Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu

Show full item record

CORE Recommender

WEB OF SCIENCETM
Citations

8
checked on Jun 22, 2022

Page view(s)

158
checked on Oct 3, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.