Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13087/1783
Title: | Extracting New Dispatching Rules for Multi-objective Dynamic Flexible Job Shop Scheduling with Limited Buffer Spaces | Authors: | Teymourifar, Aydın Öztürk, Gürkan Öztürk, Zehra Kamışlı Bahadır, Ozan |
Keywords: | Dynamic flexible job shop scheduling Dispatching rules Buffer conditions Simulation Gene expression programming Nature-inspired approaches |
Issue Date: | 2020 | Publisher: | Springer | Abstract: | Dispatching rules are among the most widely applied and practical methods for solving dynamic flexible job shop scheduling problems in manufacturing systems. Hence, the design of applicable and effective rules is always an important subject in the scheduling literature. The aim of this study is to propose a practical approach for extracting efficient rules for a more general type of dynamic job shop scheduling problem in which jobs arrive at the shop at different times and machine breakdowns occur stochastically. Limited-buffer conditions are also considered, increasing the problem complexity. Benchmarks are selected from the literature, with some modifications. Gene expression programming combined with a simulation model is used for the design of scheduling policies. The extracted rules are compared with several classic dispatching rules from the literature based on a multi-objective function. The new rules are found to be superior to the classic ones. They are robust and can be used for similar complex scheduling problems. The results prove the efficiency of gene expression programming as a nature-inspired method for dispatching rule extraction. | URI: | https://doi.org/10.1007/s12559-018-9595-4 https://hdl.handle.net/20.500.13087/1783 |
ISSN: | 1866-9956 1866-9964 |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu Tez Koleksiyonu WoS İndeksli Yayınlar Koleksiyonu |
Show full item record
CORE Recommender
WEB OF SCIENCETM
Citations
6
checked on Jun 22, 2022
Page view(s)
28
checked on Oct 3, 2022
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.